Exercise 50

The minute hand on a watch is 8 mm long and the hour hand is 4 mm long. How fast is the distance between the tips of the hands changing at one o'clock?

Solution

Draw a schematic of the watch at a certain time.

$$
\frac{d \theta_{m}}{d t}=-\frac{2 \pi}{1} \frac{\mathrm{rad}}{\mathrm{~h}}
$$

The aim is to find $d r / d t$ when $\theta=\pi / 6$; this is from the fact that there are 12 hours every 2π radians, so after the first hour has passed the angle is $2 \pi / 12=\pi / 6$. Start with the formula relating the sides of this triangle, the law of cosines.

$$
\begin{aligned}
r^{2} & =4^{2}+8^{2}-2(4)(8) \cos \theta \\
& =80-64 \cos \theta \\
r & =\sqrt{80-64 \cos \theta}
\end{aligned}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(r) & =\frac{d}{d t}(\sqrt{80-64 \cos \theta}) \\
\frac{d r}{d t} & =\frac{1}{2}(80-64 \cos \theta)^{-1 / 2} \cdot \frac{d}{d t}(80-64 \cos \theta) \\
& =\frac{1}{2}(80-64 \cos \theta)^{-1 / 2} \cdot\left[-64(-\sin \theta) \cdot \frac{d \theta}{d t}\right] \\
& =\frac{32 \sin \theta}{\sqrt{80-64 \cos \theta}} \frac{d \theta}{d t} \\
& =\frac{32 \sin \theta}{\sqrt{80-64 \cos \theta}} \frac{d}{d t}\left(\theta_{m}-\theta_{h}\right) \\
& =\frac{32 \sin \theta}{\sqrt{80-64 \cos \theta}}\left(\frac{d \theta_{m}}{d t}-\frac{d \theta_{h}}{d t}\right)
\end{aligned}
$$

Plug in the values for the angular velocities of the minute and hour hands.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{32 \sin \theta}{\sqrt{80-64 \cos \theta}}\left[\left(-\frac{2 \pi}{1}\right)-\left(-\frac{2 \pi}{12}\right)\right] \\
& =\frac{32 \sin \theta}{\sqrt{80-64 \cos \theta}}\left(-\frac{11 \pi}{6}\right)
\end{aligned}
$$

Therefore, when it's one o'clock, the rate of change of the distance between the minute- and hour-hand tips with respect to time is

$$
\left.\frac{d r}{d t}\right|_{\theta=\pi / 6}=\frac{32 \sin \left(\frac{\pi}{6}\right)}{\sqrt{80-64 \cos \left(\frac{\pi}{6}\right)}}\left(-\frac{11 \pi}{6}\right)=-\frac{22 \pi}{3 \sqrt{5-2 \sqrt{3}}} \frac{\mathrm{~mm}}{\mathrm{~h}} \approx-18.5896 \frac{\mathrm{~mm}}{\mathrm{~h}} .
$$

